Pearson

Mark Scheme (Results)
January 2017

International GCSE Mathematics A 4MA0/4HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4MA0_4HR_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths: Apart from Questions 8, 18 and 21, where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes	
1 (a)	e.g. $\frac{100}{24} \times 30$	125	2		For $\frac{100}{24}(=4.16(66 .)$.$) or \frac{30}{24}$ or 1.25 or $\frac{24}{100}=\frac{30}{x}$ oe
				A1	
(b)	$\text { e.g. } \frac{850}{300} \times 24 \text { or } 850 \div \frac{300}{24} \text { oe }$	68	2	M1	Complete method to find number made
				A1	cao
				Total 4 marks	

2	(b)	$0.15+0.4$	0.55	1	B1	
		$\frac{1-(0.15+0.4)}{3} \text { or } \frac{0.45}{3}(=0.15)$	0.3	2	M1	
					A1	
	(c)	160×0.4	64	2	M1	
					A1	Total 5 marks

3	$\frac{35}{100} \times 1200$ oe or 420	780	3	M1		[Award M2 for $1200 \times(1-0.35)]$ for 1620	
	1200-"420"			M1	dep		
				$\begin{array}{lll}\text { A1 } & \text { SC M1 for 1620 } & \\ & & \text { Total } \mathbf{3 ~ m}\end{array}$			

4	30×20 or 600		4	M1	For area of rectangle
	$\pi \times 8^{2}$ or 201.(0619298...) or 64π	399		M1	$\begin{aligned} & \text { Indep for area of circle } \\ & \text { eg } \pi \times 8^{2} \text { or } 201 .(0619298 . .) \text { or } \\ & 64 \pi \\ & \hline \end{aligned}$
	$30 \times 20-\pi \times 8^{2}$			M1	
				A1	Accept 398-399.1
					Total 4 ma

$\mathbf{5}$ (a)(i)		$\{3,5,7\}$	2	B1
(a)(ii)		$\{1,2,3,5,7,9\}$		B1
(b)		6	1	B1

7 (a)		$12 p+15$	1	B1	
(b)		$2(3 r+7)$	1	B1	
(c)	$(-5)^{2}-3 \times-5$ oe	40	2	M	$\text { or }+25 \text { or }+15$
(d)	$\frac{w^{13}}{w^{4}} \text { or } w \times w^{8} \text { or } w^{5} \times w^{4}$	w^{9}	2		For $\frac{w^{13}}{w^{4}}$ or $w \times w^{8}$ or $w^{5} \times w^{4}$
				A	
(e)			2	M	For $x \geq 3$ or $x<9$ or $3<x \leq 9$
		$3 \leq x<9$		A	Accept [3, 9) or $9>x \geq 3$
					Total 8 m

8	$\begin{aligned} & 160-3 x+7 x-20=180 \text { or } \\ & 2(160-3 x)+2(7 x-20)=360 \text { oe } \end{aligned}$	10	3	M1	For a correct equation
	e.g. $4 x=180-140$ or $-3 x+7 x=180+20-160$ or $4 x=40$ or $14 x-6 x=360-320+40$ oe			M1	For isolating the terms in x in a correct equation
				A1	Dep on at least M1
					Total 3 marks

9 (a)	$\cos x=\frac{60}{110} \text { or } \cos x=0.545(4545 \ldots)$		3	M1	
	$(x=) \cos ^{-1}\left(\frac{60}{110}\right)$			M1	
		56.9		A1	56.9-57
(b)	90-56.9(4426885...) oe	033	2	M1ft A1ft	for complete method, ft from (a) if "(a)" < 90, 90 - their x accept (0) $33-(0) 33.1$ or ft
(c)(i)		105	2	B1	
(c)(ii)		115		B1	Accept $114 . \dot{9}$
					Total 7 marks

10 (a)		111375	2	M1	For $3^{a} \times 5^{b} \times 11$ with $a=4$ or $b=3$
				A1	Accept $3^{4} \times 5^{3} \times 11$ oe
(b)		2025	2		For $3^{4} \times 5^{q}$ or $3^{p} \times 5^{2}$ (and no 11) or $n \times 3^{3} \times 5^{2}$ where $n \neq 11$
				A1	Accept $3^{4} \times 5^{2}$ oe
					Total 4 marks

11			2 M1	For $y=-2 x+c(c \neq 1)$ or $y=m x+1$ or for a correct method to find the gradient or $m=-2$ and $c=1$ stated or $-2 x+1$ or $L=-2 x+1$ oe
		$y=-2 x+1$		A1

13 (a)	$P=\frac{k}{q^{2}}$	$p=\frac{51.2}{q^{2}}$	3		Allow $P q^{2}=k$ or $q^{2}=\frac{k}{p}$ Do not allow $P=\frac{1}{q^{2}}$
	$12.8=\frac{k}{2^{2}}$ oe or $k=12.8 \times 2^{2}$ or $k=51.2$			M	For correct substitution in a correct equation. Implies first M1 Award M2 if $k=51.2$ stated unambiguously
					Award 3 marks if answer is $P=\frac{k}{q^{2}}$ but k is evaluated in (a) or (b) SCB 2 for $P q^{2}=51.2$ or $q^{2}=\frac{51.2}{p}$
(b)	$\frac{51.2}{8^{2}}$	0.8	1		ft equation in the form $P=\frac{k}{q^{2}}$ oe
					Total 4 marks

14 (a)	e.g. $\frac{8}{5}$ or 1.6 or $\frac{5}{8}$ or 0.625 or e.g. $4 \times \frac{8}{5}$ or $4 \div \frac{5}{8}$ oe or e.g. $\frac{A Z}{4}=\frac{8}{5}$ or $\frac{A Z}{8}=\frac{4}{5}$ oe	6.4	2	M1	For correct scale factor or correct expression for $A Z$ or for a correct equation involving $A Z$ oe
					$\text { oe e.g. } \frac{32}{5}$
(b)	Eg $6 \div \frac{8}{5}$ or $6 \times \frac{5}{8}$ or $\frac{6 \times 4}{46.4 "}$ oe	3.75	2	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Correct expression for $B C$ oe
(c)	$52.48-\frac{52.48}{1.6^{2}}$	31.98	3	M2	For a fully correct method or M1 for $\frac{52.48}{1.6^{2}}$ or 20.5
				A1	Accept 32.0 or 32
					Total 7 marks

15 (a)		$(y-8)(y+6)$	2		For $(y \pm 8)(y \pm 6)$ cao
(b)	$4=5(e-3) \text { or } 4=5 e-15 \text { or } \frac{4}{5}=e-3$	$\frac{19}{5}$	2	M	
				$3 \frac{4}{5} \text { or } 3.8$	
(c)	$\frac{3(x-1)-2(x+1)}{(x+1)(x-1)} \text { or } \frac{3(x-1)}{(x+1)(x-1)}-\frac{2(x+1)}{(x+1)(x-1)}$		3		oe e.g. $\frac{3(x-1)-2(x+1)}{x^{2}-1}$
	$\frac{3 x-3-2 x-2}{(x+1)(x-1)} \mathrm{oe}$			M	
		$\frac{x-5}{(x+1)(x-1)}$			$\text { oe e.g. } \frac{x-5}{x^{2}-1}$
					Tota

16 (a)	$\frac{10}{2.72-2.47}$ or 40		2	M1
				Or bar of height 40 wrong width
			Correct bar	
				1

$\mathbf{1 7}$ (a)	$0.5 \times(360-260)$ or 0.5×100	50	2	M1 A1
(b) For a complete method				
	e.g. $360-(" 50 "+260+30)(=20), 90-" 20 "$ or $\frac{180-100}{2}+30$		M1ft For a complete method.	
		70		A1

$\mathbf{1 9}$	$\left(\pi \times 5^{2}\right)+\pi \times 5 \times l$ $(25 \pi)+5 \pi l$		5	M1For a correct expression for total surface area
	$(l=) 13$			A1For the correct slant height
	$(h=) \sqrt{13^{2}-5^{2}}$ or $\sqrt{144}$ or 12		M1For the correct method to find h ft if first M1 scored	
	$(V=) \frac{1}{3} \times \pi \times 5^{2} \times 12(=314-314.3)$		M1For the correct method to find V ft if first M1 scored	
		100π		A1
				Total 5 marks

20 (a)	$6 \sqrt{c}-9+2 c-3 \sqrt{c}$ or $3 \sqrt{c}-9+2 c$	$\begin{aligned} & c=5 \\ & k=3 \end{aligned}$	3	M1	Accept $\sqrt{c} \sqrt{c}$ or $(\sqrt{c})^{2}$ instead of c
				$\begin{aligned} & \hline \text { A1 } \\ & \text { B1 } \end{aligned}$	
(b)	$\frac{1}{p \times p^{\frac{2}{3}}} \text { or } p^{m+1+\frac{2}{3}}=1$	- $\frac{5}{3}$	3	M1	
	$\frac{1}{p^{\frac{5}{3}}} \text { or } p^{\frac{-5}{3}} \text { or } m+1+\frac{2}{3}=0$			M1	
				A1	$p^{\frac{-5}{3}} \text { gains M2 only }$
					Total 6 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

